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Abstract

We consider minimizing a nonsmooth objective subject to nonsmooth
constraints. The nonsmooth functions are approximated by a bundle of
subgradients. The novel idea of a filter is used to promote global conver-
gence.
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1 Introduction

This paper is concerned with nonsmooth optimization problems where a nons-
mooth objective is minimized subject to a nonsmooth constraint. This type of
problem can be stated as

(P )







minimize
x

f(x)

subject to c(x) ≤ 0

x ∈ X.

Throughout the paper, the following assumptions are made:

A1 X ⊂ IR is a bounded polyhedral set.

A2 f, c are convex, possibly nonsmooth, locally Lipschitz continuous functions
from IRn to IR.

A3 For every x(k) ∈ X we can evaluate f (k) = f(x(k)), c(k) = c(x(k)) and one
arbitrary element of their respective generalized gradients g(k) ∈ ∂f (k) =
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∂f(x(k)) and a(k) ∈ ∂c(k) = ∂c(x(k)), where the generalized gradient (or
subdifferential) is defined as

∂f(x) := conv
{

g | g = lim
i→∞

∇f(xi), xi → x, ∇f(xi) exists & converges
}

Problems of type (P ) arise as master problems in decomposition methods
such as Benders Decomposition (e.g. [2], [10] and [9]). An important evolving
area of application is in stochastic Nonlinear Programming (NLP). Here, the
decomposition of the deterministic equivalent of a stochastic NLP gives rise to a
master problem in the first stage variables only of the form (P ).

Several methods have been proposed for solving (P ), see Kiwiel [12] and refer-
ences therein. Most methods are of bundle type, where the nonsmooth functions
f and c are approximated by a bundle of supporting hyperplanes (e.g. Hiriart-
Urruty and Lémarechal [11]).

Clearly, it is possible to re-write (P ) as a linearly constraint optimization
problem by introducing an exact penalty function. However, Kiwiel [12] points
out that this introduces numerical difficulties as the bundle method has to cope
with subgradients of widely varying magnitudes.

The method proposed in this paper is closest in concept to Kiwiel’s method
[12] but it avoids the use a penalty function. Instead the novel concept of a filter
[6] is used to force global convergence. A filter accepts a trial point whenever
the objective or the constraint violation is improved compared to all previous
iterates.

Filter methods have several advantages over penalty function methods. They
do not require a penalty parameter estimate which could be problematic to ob-
tain. Practical experience with filter methods shows that they exhibit a certain
degree of nonmonotonicity which can be beneficial.

Our method can be extended easily to the case of more than a single nonlin-
ear constraint either by setting c(x) = max{c(x)} or directly at the expense of
introducing a bundle for each nonsmooth constraint.

In Section 2 nonsmooth Fritz-John type optimality conditions are derived.
These conditions motivate a Sequential Linear Programming bundle-method for
solving (P ). The method is stabilized by a trust-region and global convergence
is induced by a filter. The method is described in Section 3 and its convergence
properties are analysed in Section 4.

2 Strictly feasible strict descent

First, nonsmooth Fritz-John (NSFJ) conditions are derived for (P ) in Lemma 2.1.
Next these conditions are generalized to allow ε-subgradients in Corollary 2.2.
This motivates a bundle approach to solving problem (P ).
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Lemma 2.1 Let x∗ be a solution to (P ). Then it follows that the set

S := {s ∈ IRn | ‖s‖ = 1 , sTg < 0 , ∀g ∈ ∂f(x∗) (2.1)

sTa < 0 , ∀a ∈ ∂c(x∗) if c(x∗) = 0 } (2.2)

is empty.

A point that satisfies S = ∅ will be referred to as a nonsmooth Fritz-John
(NSFJ) point . Lemma 2.1 states that if x∗ is optimal, then there exist no strictly
feasible strict descent directions. In passing we note that condition (2.2) can be
more conveniently written as

sTa < 0 , ∀a ∈ ∂Cc(x∗) (2.3)

by introducing Clarke’s relative generalized gradient [4, Section 6.2]

∂Cc(x) := conv
{

a ∈ IRn | a = lim
i→∞

a(i), where a(i) ∈ ∂c(x(i)), x(i) ∈ C and x = lim
i→∞

x(i)
}

where C := {x ∈ IRn | c(x) > 0} is the set of all infeasible points. Clearly,
∂Cc(x∗) = ∅ if the solution is strictly feasible, which simplifies (2.2)
Proof of Lemma 2.1.

The proof is given for the case c(x∗) = 0. The proof for c(x∗) < 0 is similar.
Assume that the set in (2.1) and (2.2) is not empty and seek a contradiction. If
the set S 6= ∅, then there exists a direction s with ‖s‖ = 1 and ε1 > 0 such that

sTg ≤ ε1 and sTa ≤ ε1 , ∀g ∈ ∂f ∗ and ∀a ∈ ∂c∗.

This follows from the fact that the subgradients are closed and convex sets (e.g.
[4, Prop. 2.1.2]). The upper semi-continuity ([4, Prop. 2.1.5]) of the subgradients
in turn implies that there exists ε2 > 0 such that

∂f(x̂) ⊂ N (∂f ∗, ε2) , ∀x̂ ∈ N (x∗, δ) and crucially sTg < 0, ∀g ∈ ∂f(x̂)
∂c(x̃) ⊂ N (∂c∗, ε2) , ∀x̃ ∈ N (x∗, δ) and crucially sTa < 0, ∀a ∈ ∂c(x̃),

where N (x∗, δ) is a neighbourhood of x∗ of radius δ and N (∂f ∗, ε2) is an ε2

neighbourhood of the set ∂f ∗. Now consider the effect of a step of length α
in the direction s. From the mean-value Theorem it follows that there exists
x̂, x̃ ∈ N (x∗, δ) such that

∃ĝ ∈ ∂f(x̂) : f(x∗ + αs) − f(x∗) = αsT ĝ < 0
∃ã ∈ ∂c(x̃) : c(x∗ + αs) − c(x∗) = αsT ã < 0.

Thus, for α sufficiently small, x∗ + αs is feasible and has a lower function value
than f(x∗). This contradicts the optimality of x∗, therefore the assumption must
be wrong and the set S must be empty. 2
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Lemma 2.1 is related to the notion of complete descent of Clarke [4]. However,
it is more useful in the context of bundle methods. If x is not optimal, then the
solution of the following (semi-infinite) Linear Program (LP) provides a descent
direction.



















minimize
η,s

η

subject to η ≥ f(x) + sTg , ∀g ∈ ∂f(x)
0 ≥ c(x) + sTa , ∀a ∈ ∂c(x)
x + s ∈ X , ‖s‖ = 1.

Note that this problem is generally intractable as it may have an infinite number
of constraints. If ∂f(x) and ∂c(x) are finitely generated, as is the case for some
composite functions [5, Chapter 14], then this LP is finite dimensional and can
become the basis of an algorithm to solve (P ).

This paper is concerned with the more general situation where the complete
subdifferential is not available, but a single element of it can be computed at any
point. The proposed algorithm solves a sequence of LPs in which the generalized
gradients ∂f(x) and ∂c(x) are approximated by bundles of ε-subgradients.

The following Corollary extends Lemma 2.1 to the situation where ε-subgradients
are used. For ε ≥ 0 the ε-subgradient is defined (e.g. Hiriart-Urruty and
Lemaréchal [11, XI.1]) as

∂εf(x) := {g ∈ IRn | f(y) ≥ f(x) + gT (y − x) − ε , ∀y ∈ IRn}.

Corollary 2.2 Let x∗ be a solution to (P ). Then it follows that the set

Sε := {s ∈ IRn | ‖s‖ = 1 , sTg < 0 , ∀g ∈ ∂εf(x∗) (2.4)

sTa < 0 , ∀a ∈ ∂εc(x
∗) if c(x∗) = 0 } (2.5)

is empty.

Proof. In [11, Chapter XI.1] it is shown that ∂f(x) = ∂0f(x). Therefore it
follows that ∂εf

∗ ⊃ ∂f ∗ and ∂εc
∗ ⊃ ∂c∗ ∀ε ≥ 0. Thus, the conditions defining Sε

are stronger and Sε ⊂ S = ∅. 2

3 A bundle-filter method for nonsmooth NLP

This section presents a bundle method for nonsmooth NLP. The LP solved at
every iteration is motivated by the total descent LP of the previous section. The
treatment in this section is similar to that of Kiwiel [12]. The key idea is to build
up a cutting plane model of the nonsmooth functions about the current point
x(k) by collecting subgradients from “nearby” points. Unlike other methods, the
present algorithm does not make use of a penalty function. Instead, a filter is
introduced which ensures global convergence.
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3.1 The bundle

This section introduces the concept of a bundle (e.g. [12]). The idea behind
the bundle is to approximate the nonsmooth NLP (P ) by a cutting plane model.
This gives rise to an LP which can be solved to either make progress towards the
solution or to enhance the cutting plane model.

The algorithm which is formally described in Section 3.4. It generates a
sequence of points {z(i)} which consists of trial points and serious points. The
sequence of serious points is denoted by {x(k)}. At every serious point x(k), a
cutting plane model of (P ) is formed using cutting planes from the current point
x(k) and some auxiliary points z(i). This cutting plane model gives rise to the
following LP

LP (x(k), j, ρ)



















minimize
η,d

η

subject to η ≥ fk,i + dTg(i) ∀i ∈ B(j)
f

0 ≥ ck,i + dTa(i) ∀i ∈ B(j)
c

x(k) + d ∈ X , ‖d‖ ≤ ρ,

where we use k to index the serious steps and j to index all trial points, including
the serious steps. The sets B(j)

f and B(j)
c are sets of indices of two bundles of sub-

gradients g(i) ∈ ∂f(z(i)) and a(i) ∈ ∂c(z(i)) from auxiliary points z(i). We assume
that the subgradients about x(k) are contained in the bundles of LP (x(k), j, ρ).
In order to avoid storing the z(i), the shifted function values

fk,i = f (i) + g(i)T

(x(k) − z(i)) ≤ f (k) (3.1)

and
ck,i = c(i) + a(i)T

(x(k) − z(i)) ≤ c(k) (3.2)

are introduced, where the inequalities follow from the convexity of f and c. The
fk,i, ck,i can be recurred whenever a serious step is taken from x(k) to x(k+1) by
using fk+1,i = fk,i + g(i)T

(x(k+1) −x(k)). Figure 1 shows a bundle and the shifted
value fk,i.

Solving LP (x(k), j, ρ) generates a new trial point x+ = x(k)+d. The algorithm
now has three possible scenarios.

1. The step is judged to make sufficient progress towards a solution of (P ).
This will be referred to as a serious step. We set x(k+1) = x(k) + d and
z(j+1) = x(k) + d, choose new bundles B(j+1)

f ⊂ B(j)
f ∪ {j + 1} and B(j+1)

c ⊂

B(j)
c ∪ {j + 1}, increase k and j and solve a new LP about x(k+1).

2. The step fails to make sufficient progress towards a solution, but the new
cutting planes at x+ change LP (x(k), j, ρ) significantly. This will be referred
to as a null step. The new cuts are added to the bundle by setting z(j+1) =
x(k) + d. Then j is increased and the modified LP (x(k), j, ρ) is solved.
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Figure 1: Shifted value fk,i = f(z(i)) + g(z(i))T (x(k) − z(i)))

3. The step fails to make sufficient progress towards a solution and the new
cutting planes at x+ fail to change LP (x(k), j, ρ) significantly. In this case,
x+ is rejected, the trust region radius ρ is reduced and LP (x(k), j, ρ) is
re-solved.

This description leaves open a number of important issues which are addressed
in the next two sections.

The traditional way to handle constraints is by introducing a penalty function.
This can either be done by reformulating (P ) as an unconstrained minimization
of the penalty function or by solving a problem like LP (x(k), ρ) and performing
a line-search on the penalty function (as in [12]). Here we prefer to use a filter
which is introduced in the next section.

3.2 The filter

This section introduces a filter for nonsmooth optimization. The filter will be
used as a criterion for accepting or rejecting a step generated by LP (x(k), j, ρ).
Filter methods have recently been introduced for smooth optimization [6], [8],
and [7]. Audet and Dennis [1] have used a filter to derive a constraint pattern
search algorithm.

A filter is a list of pairs (h(j), f (j)) , j ∈ F such that no pair dominates any
other pair, i.e.

either h(j) < h(i) or f (j) < f (i) , ∀i 6= j , i, j ∈ F

where h(j) = h(c(x(j))) = max{0, c(x(j))} is the constraint violation. A typical
filter is given by the solid lines in Figure 2.

The key idea is then to accept only points whose (h, f) pair lies below and
to the left of the step function defined by the filter. This turns out to be not
sufficient as it allows points to accumulate arbitrarily close to filter entries with
h > 0. To avoid this a small envelope around the filter is introduced. It is also
useful to “tilt” this envelope in the h direction as this enables stronger results
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f

h

Figure 2: A filter with envelope (β = 0.9, γ = 0.1)

about the feasibility of limit points to be established, see Chin and Fletcher [3].
A point x+ is now said to be acceptable to the filter if its (h+, f+) pair satisfies

h+ ≤ βh(j) or f+ ≤ f (j) − γh+ , ∀j ∈ F (3.3)

where 0 < γ < β < 1 are constants. This envelope is illustrated by the dashed
lines in Figure 2.

Note that this still allows points to accumulate at feasible but non-optimal
limit points. To avoid this it is necessary to extend ideas from unconstrained
optimization. Define the actual reduction as

∆f = f(x) − f(x + d) (3.4)

and the predicted reduction as

∆l = f(x) − η. (3.5)

Steps near the feasible region are then required to satisfy a sufficient reduction
condition

∆f ≥ σ1∆l if ∆l ≥ δh. (3.6)

If (3.6) is satisfied, then the step is referred to as an f-type step. Otherwise, if
∆l(k) < δ(h(k)), it is labelled an h-type step. These definitions are in fact the
same as the ones required by filter methods for smooth optimization problems.

3.3 Null steps

The nonsmoothness of (P ) requires the introduction of a bundle of subgradients
as in Section 3.1. The bundle is accumulated by taking a number of null-steps



8 R. Fletcher and S. Leyffer

at which the current point remains unchanged but new subgradient information
is added to the bundle. A null step is taken, if the trial point x + d is rejected
and satisfies

f(x + d) ≥ η + σ2∆l (3.7)

or

c(x + d) ≥ βτ (k), (3.8)

where 0 < σ2 < 1 and σ1 + σ2 ≤ 1 and τ (k) = min{h(j), j ∈ F (k)} > 0.

3.4 The algorithm

The algorithm is stated by way of Figure 3. It consists of an inner iteration in
which the trust-region radius is reduced until either a serious step (moving to a
new point) or a null step (enhancing the bundle) is found. After either a null
step or a serious step have been accepted, the trust-region radius is reset to any
value of ρ ≥ ρ0.

�

?

-

?

?

?

?

�

?
6
-

6

-

-

6

6

yes

no

no

restoration

phase

infeasible?

optimal?

yes

no

yes

Inner Iteration

Outer Iteration
poss. remove inactive cuts

STOP

solve LP for step d

acceptable to filter?

pred. reduction not achieved?

h-type iteration? serious step; new point

null step condition?

reduce TR

update the bundle

min TR: ρ ≥ ρ0

(η,d) solution to LP

d = 0 ⇒ optimal

x(k) + d acceptable to F

∆f < σ1∆l
but ∆l ≥ δ(h)

f+ ≥ η + σ2∆l
or c+ > βτ (k)

∆l < δ(h(k))
⇒ add (h(k), f (k)) to F

x(k+1) = x(k) + d

k = k + 1

ρ = ρ/2

z(j+1) = x(k) + d

B(j+1) ⊂ B(j) ∪ {j + 1}
j = j + 1

Figure 3: Bundle-filter method for nonsmooth NLP
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The algorithm contains a restoration phase which is entered whenever the
current LP (x(k), j, ρ) is inconsistent. The aim of this phase is to move closer
to the feasible region and restore consistency of the LP. This may be achieved
by using a trust-region strategy to minimize the norm of the infeasibility. This
problem is then a linearly constraint, convex nonsmooth optimization problem
which can be solved with a number of traditional techniques such as [13].

In the restoration phase, a number of serious steps are taken and k is increased.
The restoration phase has two possible outcomes: either for some k, a consistent
LP (x(k), j, ρ) approximation is encountered or all LP (x(k), j, ρ) are inconsistent.
In the first case, the restoration phase terminates and the algorithms returns to
solving (P ). In the latter case, the restoration phase converges to a minimum
of the constraint violation of (P ). If this minimum is positive, then the original
problem (P ) is inconsistent.

After accepting a serious step or a null step, it is possible to remove some
inactive cuts from LP (x(k), j, ρ). Thus

B(j+1)
f ⊂ B(j)

f ∪ {j + 1} and B(j+1)
c ⊂ B(j)

c ∪ {j + 1},

where it is assumed that the new cutting planes in f and c are both added to the
new bundle, but older (inactive) cuts may be removed from the bundle.

4 Convergence analysis

This section gives a global convergence proof for the bundle-filter algorithm pre-
sented in the previous section. First, in Lemma 4.1, it is shown that the inner
iteration is finite. This implies that the algorithm is well defined.

Lemma 4.1 The inner iteration is finite.

Proof. Assume it is not finite. Then it follows that ρ → 0. Distinguish two
cases depending on whether h(k) > 0 or h(k) = 0.

Case 1: h(k) > 0 implies that LP (x(k), j, ρ) becomes incompatible for ρ < ρ̂
sufficiently small. Thus the inner iteration terminates by entering the restoration
phase.

Case 2: If h(k) = 0, only cuts in the LP that are active at x(k) play a role as
ρ → 0. These are the cuts with fk,i = f (k) or ck,i = c(k) = h(k) = 0. Denoting
these active cuts by A(k)

f and A(k)
c and replacing η = ν + f (k), the LP (x(k), j, ρ)

becomes


















minimize
η,d

ν + f (k)

subject to ν ≥ dTg(i), i ∈ A(k)
f

0 ≥ dTa(i), i ∈ A(k)
c

x(k) + d ∈ X , ‖d‖ ≤ ρ.
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Dividing each constraint by ρ, it follows that d solves LP (x(k), j, ρ) if and only
if s = d/ρ and θ = ν/ρ solve



















minimize
θ,s

θρ + f (k)

subject to θ ≥ sTg(i), i ∈ A(k)
f

0 ≥ sTa(i), i ∈ A(k)
c

s ∈ T (x(k); X) , ‖s‖ ≤ 1,

where

T (x(k); X) :=

{

s ∈ IRn | s = lim
i→∞

x(i) − x(k)

τi

, x(i) ∈ X , τi ↘ 0

}

is the tangent cone to X at x(k). The minimizer (θ, s) of this last LP is indepen-
dent of ρ. Moreover, θ ≤ 0, since (θ, s) = (0,0) is feasible, which implies that
the predicted reduction is ∆l = −θρ ≥ 0 for ρ sufficiently small. Assume that
c+ ≤ βτ (k), since otherwise a null step must be taken and the inner iteration ter-
minates. Thus, the steps must have been rejected due to not attaining sufficient
reduction. This implies

f(x(k) + d) > f (k) − σ1∆l = f (k) + σ1θρ
≥ f (k) + (1 − σ2)θρ = f (k) + ν + σ2∆l = η + σ2∆l,

where the first inequality follows from the fact that sufficient reduction does not
hold and the second inequality follows from σ1 +σ2 ≤ 1. Thus a null step is taken
for ρ sufficiently small and the inner iteration terminates. 2

Remark 4.2 After a null step, the solution of LP (x(k), j, ρ) differs significantly
from the previous LP solution in the following sense.

Let (η(j),d(j)) be the solution of LP (x(k), j, ρ) before the null step and let (η(j+1),d(j+1))
be any feasible point of LP (x(k), j + 1, ρ). Now consider the effect of both null
step conditions in turn.

1. If the null step condition on f holds, then f (j+1) = f(x(k) + d(j)) ≥ η(j) +
σ2∆l, and ∆l > 0 and the cut η ≥ fk,j+1 + g(j+1)T

d is added. Substituting
for fk,j+1 shows that any feasible point (η(j+1),d(j+1)) in LP (x(k), j + 1, ρ)
must satisfy

η(j+1) ≥ f (j+1)+g(j+1)T

(−d(j))+g(j+1)T

d(j+1) ≥ η(j)+σ2∆l+g(j+1)T

(d(j+1)−d(j)).

Thus
(η(j+1) − η(j)) + g(j+1)T

(d(j) − d(j+1)) ≥ σ2∆l > 0

which shows that (η(j+1),d(j+1)) differ significantly from (η(j),d(j)) after the
null step.
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2. If the null step condition on c holds, then the cut 0 ≥ ck,j+1 + a(j+1)T

d

is added. Substituting for ck,j+1, and evaluating at any feasible point
(η(j+1),d(j+1)) gives

0 ≥ c(j+1) +a(j+1)T

(−d(j))+a(j+1)T

d(j+1) ≥ βτ (k) +a(j+1)T

(d(j+1)−d(j)).

Thus
a(j+1)T

(d(j) − d(j+1)) ≥ βτ (k) > 0

which shows that d(j+1) differs significantly from d(j) after the null step.

In the subsequent analysis, it is useful to distinguish four different cases:

A The Restoration phase fails. (P ) is infeasible.

B An optimal solution is found.

C There exists an infinite subsequence of serious steps.

D There exists an infinite sequence of null steps after a finite number of serious
steps.

The fact that all iterates lie in the compact set X and Lemma 4.1 imply
that if the algorithm does not terminate finitely, then it generates at least one
converging subsequence. In case C, denote this subsequence of serious steps by
{x(k), k ∈ S} and its limit point by x∞ = limk∈S x(k). In case D, denote this
subsequence of null steps by {z(i), i ∈ S} and its limit point by z∞ = limi∈S z(i).

In case C it is shown in Lemma 4.3 that the filter ensures feasibility of all
limit points. Moreover, if this limit point is not an NSFJ point, then we show in
Lemma 4.4 that an f-type step that is acceptable to the filter is generated after
a finite number of null steps. In case D, Lemma 4.5 shows that any limit point
of the final sequence of null steps is a feasible NSFJ point. Finally, Theorem 4.6
summarizes these results.

Lemma 4.3 Every limit point x∞ of a subsequence of type C is feasible.

Proof. This result is established in [3]. A weaker result which ensures only the
existence of a feasible limit point is established in Lemma 3, [8]. 2

Lemma 4.4 In case C, assume that x∞ is not an NSFJ point and that k ∈ S, k
sufficiently large is fixed. Then a serious step must be accepted by the algorithm
after a finite number of null steps. Moreover, this serious step is an f-type step.

Proof. If x∞ is not an NSFJ point, then there exist ε > 0 and ε0 > 0 and a
neighbourhood N∞ of x∞ such that for every x ∈ N∞ there exists a strictly
feasible strict descent direction s, ‖s‖ = 1 with

sTg ≤ −ε and sTa ≤ −ε , ∀g ∈ ∂ε0f(x) and ∀a ∈ ∂ε0c(x).
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In what follows we may assume x(k) ∈ N∞ for all k sufficiently large. Now we
assume that an infinite number of null-steps is taken and seek a contradiction.
First we show that for k sufficiently large, LP (x(k), j, ρ) is consistent. From
Lemma 4.3 it follows that h(k) → 0.
The constraints i ∈ B(j)

f of LP (x(k), j, ρ) are clearly all feasible for any ρ ≥ 0.

Now consider the cutting planes i ∈ B(j)
c . Since some cutting planes may come

from auxiliary points z(i) 6= x(k) it is necessary to distinguish two cases, depending
on whether the cutting plane is “nearly” active at x(k) or not. This can be made
precise by distinguishing whether a(i) ∈ ∂ε0c(x) for some x ∈ N∞ or not.
Case 1: If a(i) ∈ ∂ε0c(x) for some x ∈ N∞, then sTa(i) ≤ −ε. The convexity of
c(x) implies that ck,i ≤ c(k) = h(k). Thus the cut

ck,i + ρsTa(i) ≤ h(k) − ρε

is satisfied whenever ρ ≥ h(k)/ε.
Case 2: If a(i) 6∈ ∂ε0c(x) for some x ∈ N∞, then the definition of the ε0 subdif-
ferential implies that c∞,i < −ε0. Now observe

ck,i + ρsTa(i) = c(i) + a(i)T

(x(k) − z(i)) + ρsTa(i)

= c∞,i + a(i)T

(x(k) − x∞) + ρsTa(i)

≤ −ε0 + L‖x(k) − x∞‖ + ρsTa(i)

where L is the local Lipschitz constant of c(x). Now, if

‖x(k) − x∞‖ ≤
ε0

2L

then it follows that
ck,i + ρsTa(i) ≤ −

ε0

2
+ ρsTa(i)

Let a > 0 be a constant such that a ≥ sTa(i) (a exists by the compactness of
∂c(x)) and define

κ :=
ε0

2a
. (4.1)

The above argument shows that the cutting plane i is consistent if ρ ≤ κ inde-
pendent of i. Combining both cases, it follows that the LP is consistent, if

h(k)

ε
≤ ρ ≤

ε1

a
.

Since the lower bound tends to zero, it follows that for k sufficiently large, the
LP is consistent for ρ = 1

2
min(ρ0, κ).

Now assume that an infinite number of null steps is taken and seek a contra-
diction. If such an infinite sequence exists, then the null step conditions (3.7) or
(3.8) must hold infinitely often. Now consider both conditions in turn.
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If an infinite sequence of null steps with (3.8) is taken, then there exists an
infinite sequence of null steps d(j) = z(j) − x(k) with c(x(k) + d(j)) ≥ βτ (k). The
compactness of the trust region and X ensures that there exists a converging
subsequence with limit z∞. At every such iteration the following cut is added to
the bundle.

0 ≥ ck,j+a(j)T

(x−x(k)) = ck,j−a(j)T

(x(k)−z(j))+a(j)T

(x−z(j)) = c(j)+a(j)T

(x−z(j)),

where we have used (3.2). The limit z∞ must satisfy these cuts for all j. Substi-
tuting x = z∞ and taking limits on both sides gives

0 ≥ c(z∞) + a∞T

(z∞ − z∞) = c(z∞),

where the equality follows from the boundedness of ∂c. Thus any limit point z∞

is feasible.
Since z∞ is feasible it follows in particular, that there exists an index j0 such
that c(z(j)) ≤ βτ (k), ∀j ≥ j0 which means that z(j) for all j sufficiently large is
acceptable to the filter.

Therefore, the sequence of null steps can only be infinite, if the sufficient
reduction condition is not satisfied. The cuts that are added at every null step
include

η ≥ fk,j + g(j)T

d.

Substituting for fk,j, see (3.1) and evaluating these cuts at d(j) shows that the
sequence of LP solutions (η(j),d(j)) must satisfy

η(j+1) − η(j) + g(j)T

(d(j) − d(j+1)) ≥ σ2ερmin

⇒ η(j+1) − η(j) + g(j)T

(z(j) − z(j+1)) ≥ σ2ερmin > 0,

where ρmin = 1
2
min(ρ0, κ), κ is defined in (4.1) and we have used Remark 4.2

and the fact that ∆l ≥ ρε. This contradicts the fact that the sequence (η(j), z(j))
converges (the LP values η(j) converge since they are bounded below by the
supports on f(x) and above by f∞ due to convexity).
Therefore, the assumption must be wrong and a serious step is accepted after a
finite number of null steps. Moreover, this serious step satisfies the conditions for
an f-type step. This can be seen from the fact that

∆l(k) ≥ ρε ≥ δ(h(k))

for k sufficiently large (since otherwise, h(k) would be bounded away from zero).
2

Lemma 4.5 In case D, suppose that the algorithm generates a finite number of
serious steps and that k is the last serious step. Then it follows that x(k) is a
feasible NSFJ point.



14 R. Fletcher and S. Leyffer

Proof. First it is shown that x(k) is feasible. Then we can apply Lemma 4.4 to
show that x(k) is also an NSFJ point. To show that x(k) is feasible we distinguish
two cases, depending on whether ρ → 0 or not.

If ρ → 0, then the sequence of null steps z(j) → z∞ = x(k). Now assume that
this limit is not feasible, i.e. c(k) ≥ ε > 0. Since z(j) → x(k), it follows that

0 ≥ c(k) + a(k)T

(z(j) − x(k)) = c(k) ≥ ε > 0

which is a contradiction. Thus x(k) must be feasible if ρ → 0.
Next consider the case where ρ ≥ ρ > 0 ∀j. In this case, the algorithm

behaves like a cutting plane method on the ball of radius ρ about the point x(k).
The cutting plane method converges (e.g. [11]) to a feasible minimum, say z∞.
Again assume that x(k) is not feasible (h(k) > 0). Since z∞ is feasible, it follows
that h(j) → 0 so that for j sufficiently large the null step is acceptable to the
filter, i.e. h(j) ≤ βτ (k). Now, if there exists a j such that the predicted reduction
∆l(j) ≤ δh(k), then a serious h-type step is accepted which contradicts the fact
that only null steps are taken.
Therefore there exists a constant γ > 0 such that

∆l(j) ≥ γ := δh(k) > 0 ∀j.

From the convergence of the cutting plane method it follows that

η(j) ↗ f∞ and f (j) → f∞

the LP function values, η(j), and the function values, f (j), converge. Therefore,
there exists j0 such that

f (j) − η(j) ≤ (1 − σ1)γ
⇒ f (j) − η(j) ≤ (1 − σ1)∆l(j) = (1 − σ1)(f

(k) − η(j))

for all j ≥ j0. Rearranging this inequality and substituting for f (j) in the actual
reduction condition (3.4) implies that

∆f = f (k) − f (j) ≥ f (k) − η(j) − (1 − σ1)(f
(k) − η(j)) = σ1∆l(j),

for all j ≥ j0. This shows that a serious f-type step is accepted, again contra-
dicting the fact that no more serious steps are taken. Thus it follows that x(k) is
feasible.

Since h(k) = 0, we can now apply Lemma 4.4 which shows that if x(k) is not
an NSFJ point, then a serious f-type step is accepted after a finite number of null
steps. This contradicts the fact that no more serious steps are taken. Therefore,
x(k) must be an NSFJ point. 2

Theorem 4.6 If the assumptions A1 to A3 hold, then for the algorithm in
Figure 3, either A or B holds or there exists an infinite subsequence of type C or
D. Any accumulation point of this subsequence is an NSFJ point.
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Proof. It suffices to consider the case in which neither (A) nor (B) occurs. The
existence of an infinite subsequence of type (C) or (D) follows from Lemma 4.1.
In case (C), let x∞ be any accumulation point of this subsequence and consider
the (thinner) subsequence of serious steps {x(k), k ∈ S} converging to x∞. We
will show that x∞ is an NSFJ point.
The feasibility of x∞ follows from Lemma 4.3. Now assume that x∞ is not an
NSFJ point. Then it follows from Lemma 4.4 that an f-type step is taken after
a finite number of null steps. This f-type step is taken for ρmin = 1

2
min{κ, ρ0}

and therefore ∆l ≥ ερmin. The fact that an f-type step is taken implies that
∆f (k) > σερmin which contradicts the boundedness of

∑

∆f (k). Therefore, x∞

must be an NSFJ point.
In case (D), it follows that after a final serious step, only null steps are taken. In
this case, Lemma 4.5 shows that x(k) is an NSFJ point and must be feasible. 2
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